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This presentation 
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 Compute lower bounds on the cost of optimal 

control problems 

 For a large class of problems 

 Systematically 

On a computer 

 

 Solve the problem 

 Sometimes only! 



The idea 
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Static optimization 
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The moment approach 
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Measures: geometric viewpoint 
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 Measure space 

 

 Notation 

 

 Properties 
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A few measures 
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 Lebesgue measure (         )  

 

 

 

 Dirac measure at y (    ) 

 

 

 

 Probality measure 
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Measures: relation with integration 
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 The Lebesgue integral                       is the 

 

completion of its Riemann counterpart  

 

 

 Integration w.r.t. Dirac measure: 

 



Measures: functional analysis viewpoint 
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 Let : 

          , bounded continuous functions, 

 

           , sufficiently regular measures 

 

 Riesz:  then positive linear functionals on   

          "are"  

 

 We note 

 



Towards a measure problem 
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                :   take    

                :   by definition 
                    
                   then  



What does it measure? 
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Properties of the measure problem 
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 The problem is linear! 

 

 The set of admissible solutions is convex 

 

 The set of optimal solutions is convex 

 

 The infimum is a minimum! 
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Moments 
15 

 Moments 

 

 Moment sequence 

 

 Moment matrix  

 

 Localizing matrix at e.g.  

 



Properties of moments matrices 
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   

 

 

Proof:  

  

 

 Is the converse true? 



The converse 
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 Let 

 

                         is supported on  

 

 

 

 

 Proof: Riesz-Haviland + Putinar’s Positivstellensatz 

 

 



From a measure to a moment problem 
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such that such that 
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From a moment to a LMI problem 

 

 (Lasserre) relaxations: optimize only on moments of 
order up to 2r 

 

   

 

 If at some relaxation 
 
 
Then μ is k-atomic and we can extract its k support 
points 
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A simple example 

Minimization 

problem 

Measure 

problem 

Moment 

problem 

LMI   

problem 
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A GloptiPoly snippet 
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>> mpol x; % define optimization variable 

>> P = msdp( min((x-1)^2) , x^2 <= 4, 2); % define problem: criterion, constraint, order 

>> [flag, obj] = msol(P) % solve problem 

 

flag = 

     1 

 

obj = 

  2.8868e-009 

 

>> double(x) % extract solution(s) 

 

ans = 

    1.0000 

 

>> double(mmat(meas(1))) % show moment matrix 

 

ans = 

    1.0000    1.0000    0.9999 

    1.0000    0.9999    0.9999 

    0.9999    0.9999    0.9998 
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Our problem 
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Measure for impulses 
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 We embed 

 

 in 

 

 

   where           can be decomposed as 

 

 



Occupation measures 
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 Fix  

 

 Define  

 

 Occupation measure: 

 

 

 Control measure: 

A 

B 



Weak formulation of dynamics 
29 

 For each continuous             : 

 

 

 

 



This is a relaxation! 
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A basic example (1/2) 
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such that 



A basic example (2/2) 
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such that such that 



Orbital rendez-vous, l1-induced norm 
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v- 

v+ 

u- 
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On Carter’s third example 

d Vd 

1 0.0463 

2 0.0680 

3 0.2188 

4 0.2972 
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A non-convex example (1/2) 
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A non-convex example (2/2) 
36 

Cost = 0.682 
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The method, yet again 
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Critique 

+ - 

Global optimality Extraction of solutions 

Lower bounds Finite convergence ? 

Certificate of infeasibility Relies on LMI solvers 
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The main problem… 
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 # of monomials of n variables up to degree 2r: 

 

 

 

 Example with n=6 
r #  

0 1 

1 28 

2 210 

3 924 

4 3003 

5 8008 

6 18564 



Thank you! 
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 Presentation available at: 

 

 

http://homepages.laas.fr/mclaeys 


